26.

$$
360-(90+90+42)=138^{\circ}
$$

8.

$$
\begin{aligned}
& x^{2}+4000^{2}=4240^{2} \\
& x^{2}+16000000=17,977,600 \\
& -16,000000-16000000 \\
& \sqrt{x^{2}}=1977600 \\
& x=
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}=8 x \\
& -8 x-8 x \\
& \hline 2 x^{2}-8 x=0 \\
& 2 x(x-4)=0
\end{aligned}
$$

$$
\begin{array}{lll}
0-6 x & \frac{2 x}{2}=0 & x-4=0 \\
7-12 v & x=6 & \frac{44+4}{} 13 \uparrow- \\
x=4
\end{array}
$$

11.2 Arcs and Chords
central $L: L$ whose vertex is the center of a circle.
arc: unbroken part of a circe
$\overparen{A B}$

Minor are: arc whose endpts are on the interior of a central 2 .

- measumis equal to central 2.

$$
m \angle x=m \overparen{A C}
$$

Major are: arc whose end pts. are on the exterior of the central L. - measure is equal to 360 minus the central 2.

semicircle: endpts. of the arr lie on the diameter.

- measure is equal to 180°

$$
m \overparen{A B C}=180^{\circ}
$$

P. 756 example 1

$$
\begin{aligned}
& m \overparen{A B}=360: 25=90^{\circ} \\
& m \overparen{F E D}=360.81=291.6^{\circ}
\end{aligned}
$$

adjacentares ares of the same circle + hat intersect in onept.

$$
\overparen{B C}+\overparen{C D}
$$

Arc Addition Postulate
the measure of an arc formed by two adjacent arcs is the sine as the sum of the measures of the 2 ares.

$$
m \overparen{B C D}=m \widehat{B C}+m(\tilde{n}
$$

Theorem 11-2-2:
In a circle or \cong circles:
$1 . \cong$ central $\dot{L}_{\uparrow}^{\prime}$ have \cong chords

2. \cong chords have $\cong \operatorname{arcs}$

$3 \cong$ arcs have \cong central angles

Find m TV

$$
\begin{gathered}
9 x-11=7 x+11 \\
-7 x=-7 x \\
2 x-11=11 \\
+11 \\
\frac{2 x}{2}=222 \\
\frac{21}{2} x=11
\end{gathered}
$$

The orem 11-2-3: if a radius/diameter is \perp to a chord, then it bisects the chord and arc.

$$
\begin{aligned}
& A E=C E \\
& m \overparen{A D}=m C
\end{aligned}
$$

Thevem 11-2-4: In a ciele, the \perp bisectox of a chond is the radius/diameter.

Ex:

NP

$$
\begin{aligned}
& \text { p. } 760 \\
& 2-34 \text { even } \\
& \text { oddsextrannelt }
\end{aligned}
$$

