11.

$$
\begin{aligned}
& \text { Distance }+ \text { Distance }=10 \\
& \text { cor } 1 \quad \text { cove } \\
& r t+r t=10 \\
& 40 t+55 t=10 \\
& \frac{95 t}{95}=\frac{10}{95} \\
& t=.11 \text { hrs }
\end{aligned}
$$

$$
17-4 \cdot 0 \leq \frac{x-1 / 4}{-y}<2 \cdot-4
$$

$$
\left.\left.\underset{+1}{0} \geq x_{+1}\right\rangle-1\right\rangle-8
$$

$$
1 \geq x>-7
$$

38.

$$
\begin{aligned}
& \{35 x-33 y=0 \\
& \left\{\begin{array}{l}
12 x-11 y=92
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0-5 t \\
6 \\
60^{2}
\end{array} \\
& 6_{1110}^{101}
\end{aligned}
$$

4.1 Systems of Equations

Substitution Me hod

$$
\left\{\begin{array}{l}
x+y=5 \\
2 x--y=0 \\
x+y=5 \\
-x=-x \\
y=15-x) \\
2 x-\left(\frac{15-x)}{}=0\right. \\
2 x-5+x=0 \\
3 x-5=0 \\
\frac{55}{}+5 \\
\frac{3 x}{3}=\frac{5}{3} \\
x=\frac{5}{3}
\end{array}\right.
$$

Isolate I various d substitute into the other equation.

$$
\begin{aligned}
& y=5-x \\
& y=5-\frac{5}{3} \\
& y=\frac{10}{3} \\
& \left(\frac{5}{3}, \frac{10}{3}\right){ }^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-2 y=1 \\
x+4 y=3
\end{array}\right. \\
& x+4 y=3 \\
& \frac{-4 y-4 y}{x=3-4 y} \\
& 3(3-4 y)-2 y=1 \quad x=3-4 y \\
& 9-12 y-2 y=1 \\
& x=3-4\left(\frac{4}{7}\right) \\
& 9-14 y=1 \\
& x=3-\frac{16}{7} \\
& \begin{array}{l}
-\frac{14 y}{-14}=-\frac{8}{14} \\
y=\frac{4}{7} \quad x=\frac{5}{7} \quad\left(\frac{5}{7}, \frac{4}{7}\right) \quad 1
\end{array}
\end{aligned}
$$

Elimination/Limar combo.

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x-5 y=13 \\
(3 x-y=7)-5
\end{array}\right. \\
& \text { Add } \\
& \text { oppositis } \\
& \text { in } x^{3} 01 y^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
-2 x+6 y=3) 2 \\
4 x-12 y=-6
\end{array}\right. \\
& \begin{array}{l}
-4 x+12 y=6 \\
\frac{4 x-12 y=-6}{0}=0
\end{array} \text { True statement }
\end{aligned}
$$

Infinite solutions

Haw: p. 245

$$
\begin{aligned}
& 42.74 \text { even } \\
& \text { odds } \mathrm{EC}
\end{aligned}
$$

