100. 

$$
\begin{aligned}
5.65 \\
x
\end{aligned}+8=10(6.97)
$$


$5.65(10-y)+8.95 y=69.7$ $56.5-5.65 y+8.95 y=69.7$

$$
\begin{aligned}
& 56.5+3.30 y=69.7 \\
& -56.5
\end{aligned}
$$

$$
-56.5
$$

$$
\begin{gathered}
\frac{3.30 y}{3.3}=\frac{132}{3.3} \\
y=41 \mathrm{bs} \\
x=6 \mathrm{lbs}
\end{gathered}
$$

$$
0-3+
$$

$$
\begin{gathered}
4-6{ }^{2} \\
77^{1-}
\end{gathered}
$$

4.2 systems w/ 3 variables Solutions: intersection of 3 lines.

$$
(x, y, z)
$$



$$
E x: \text { is }(4,-2,2) \text { a }
$$



$$
12-4-8=0
$$

$$
0=0
$$

$$
\begin{aligned}
-2+2 & =0 \\
0 & =0 \mathrm{~V}
\end{aligned}
$$

Back substitution if you know I or move variables.

$$
E x:\left\{\begin{array}{l}
x-2 y+2 z=9 \\
y+2 z=5 \\
z=3
\end{array}\right\}
$$

Elimination :

$$
\begin{aligned}
& 83 x-2 y+z=9 \\
& x+y-2 z=-8 \\
& -x-2 y+3 z=13 \\
& x+y-2 z=-8 \\
& \frac{-x-2 y+3 z=13}{-1 y+z=5} \\
& \begin{array}{l}
3 x-2 y+z=9 \\
\left(-x^{2}-2 y+3 z^{z}-13\right) 3
\end{array} \\
& 3 x-2 y+z=9 \\
& \begin{array}{l}
-8 x-6 y+9 z=39 \\
-8 y+10 z=48
\end{array} \\
& \left\{\begin{array}{l}
\left(-1 y+z-5 y^{2}\right)-8 \\
-8 y+10 z^{2}=48
\end{array}\right. \\
& \begin{array}{cc}
8 y-8 z=-40 & -1 y+z=5 \\
-8 y+10 z=48 \\
\frac{2 z}{2}=\frac{8}{2} & \frac{-1 y+4}{}=5 \\
z=4 & \frac{-4 y}{-1}=-1 \\
\hline-1 & =-1
\end{array} \\
& x+y-2 z=-8 \\
& x-1-2(4)=-8 \\
& \begin{array}{l}
x-1-8=-8 \\
x-9=-8
\end{array} \quad(1,-1,4) \\
& \begin{aligned}
x-9 & =-8 \\
+9 & +9
\end{aligned} \\
& x=1
\end{aligned}
$$

U

$$
\begin{gathered}
H W: p .258 \\
1-12
\end{gathered}
$$

$$
=
$$

