S. 3 Radical Expressions

Rationalizing the denominate Cannot have a root in the denominator so we do is multiply by the root in the denominator

$$
E x: \sqrt{\frac{4}{x}}
$$

S. 3 Radical Expressions

Rationalizing the denaminato Cannot have a root in the denominator sowht we d_{o} is multiply by the root in the denominator (for squaw roots)

$$
E x: \begin{aligned}
\sqrt{\frac{4}{x}}=\frac{\sqrt{4}}{\sqrt{x}} & =\frac{2 \sqrt{x}}{\sqrt{x}} \\
& =\frac{2 \sqrt{x}}{\sqrt{x^{2}}}-7 x^{\frac{2}{2}} \\
& =\frac{2 \sqrt{x}}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{45}{4 x^{3}}} \\
= & \frac{\sqrt{45}}{\sqrt{4} \sqrt{x^{3}}} \times x^{\frac{3}{2}} \\
= & \frac{\sqrt{9} \cdot \sqrt{5}}{2 \times \sqrt{x}} \\
= & \frac{3 \sqrt{5}}{2 x \sqrt{x}} \cdot \sqrt{x} \\
= & \frac{3 \sqrt{5 x}}{2 \times \sqrt{x^{2}}} \rightarrow \times \frac{3}{2}
\end{aligned}
$$

HW: $\begin{array}{r}\text { Pa } \\ 329\end{array}$

Adding t subtracting
(1) same root
(2) must have the same radicand $\sqrt{9}$

$$
\begin{aligned}
& 5 \sqrt{2}-7 \sqrt{2} \\
& 1 \sqrt{5}+3 \sqrt{5}
\end{aligned}
$$

$$
\sqrt{25 y}+\sqrt{81 y}
$$

$$
\sqrt{12 y}+\sqrt{75 y^{5}}
$$

Hw: p. 327

$$
3-99 \text { mult }
$$ of 3 .

