
5. 5 Solving Radical Equations

1. Need to get the root by itself, or one root on each side.
2. undo the root by taking a pourer
3. Solve the equation ot check your answer
$E x: \sqrt[3]{2 x+1}-2=3$

$$
\begin{gathered}
(\sqrt[3]{2 x+1})^{3}=(5)^{3} \\
2 x+1=125 \\
\frac{2 x=1}{2}=\frac{124}{2} \\
x=62
\end{gathered}
$$

chuck:

$$
\begin{gathered}
\sqrt[3]{2(62)+1}-2=3 \\
\sqrt[3]{125}-2=3 \\
5-2=3 \\
3=3
\end{gathered}
$$

$E x: \begin{array}{r}\sqrt{3 x}+6=0 \\ \frac{-6}{}-6 \\ (\sqrt{3 x})^{2}=(-6)^{2}\end{array}$
chuck:

$$
\frac{3 k}{3}=\frac{36}{3}
$$

$$
\begin{aligned}
\sqrt{3 \cdot 2}+6 & =0 \\
\sqrt{36}+6 & =0 \\
6+6 & =0
\end{aligned}
$$

$$
12=0
$$

$$
x=12
$$

No real solutions

$$
\begin{array}{cr}
\sqrt{5 x+3}-\sqrt{x+11}=0 & \\
+\sqrt{x+11}+\sqrt{x+11} & \text { check: } \\
\begin{array}{rr}
(\sqrt{5 x+3})^{2}=(\sqrt{x+11})^{2} & \sqrt{5(2)+3}-\sqrt{2+11}=0 \\
5 x+3 & =x+11 \\
\frac{-x}{4 x+3}=11 & \sqrt{13}-\sqrt{13}=0 \\
-3 & =0 \\
\frac{4 x}{4}=\frac{8}{4} x=2 &
\end{array} &
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\sqrt{x}+2=x \\
-2=-2 \\
(\sqrt{x})^{2}=(x-2)^{2}
\end{array} \\
& x=(x-2)(x-2) \\
& x=x^{2}-2 x-2 x+4 \\
& \begin{array}{cc}
x=x^{2}-4 x+4 \\
-x & -x
\end{array} \\
& 0=x^{2}-5 x+4 \\
& 0=\frac{(x-4)(x-1)}{-4 x} \begin{array}{c}
\frac{-1 x}{-5 x}
\end{array} \\
& x-y=0 \\
& +4+4 \\
& x=4 \\
& \text { or } \begin{aligned}
& x-1=0 \\
&+1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hw: p. } 346 \\
& 6.42 \text { evens }
\end{aligned}
$$

