$$
\begin{aligned}
& 1 \text { 10. } \sqrt{\frac{53}{3}} \sqrt{3}-=\frac{\sqrt{159}}{3} \frac{\sqrt{3}}{\sqrt{3}} \\
& \text { 8. } \frac{2 x^{2}}{2}+\frac{6 x-5}{2} \frac{50}{2} \\
& \begin{aligned}
& x^{2}+3 x-\frac{5}{2}=0 \\
&+\frac{5}{2}+\frac{5}{2}
\end{aligned} \\
& x^{2}+3 x+\frac{9}{4}=\frac{5}{2}+\frac{9}{4} \\
& 3 \div 2=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \\
& \sqrt{\left.x+\frac{3}{2}\right)^{2}}=\frac{\sqrt{\frac{9}{4}}}{} \\
& x+\frac{3}{2}= \pm \frac{\sqrt{19}}{2} \\
& \begin{array}{c}
-\frac{2}{2}-\frac{3}{2} \\
x=-\frac{3}{2} \pm \frac{\sqrt{5}}{2}
\end{array} \\
& \text { 5. } \begin{aligned}
x^{2} & =7 x \\
-7 x & -7 x \\
x^{2}-7 x & =0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10. } \frac{3 x^{2}}{3}-\frac{24 x}{3}=\frac{5}{3} \\
& x^{2}-8 x+16=\frac{5}{3}+16 \\
& \begin{array}{l}
-8 \div 2 \cdot(-4)^{2}=16 \\
\sqrt{(x-4)^{2}}=\sqrt{\frac{53}{3}}
\end{array} \\
& x-4= \pm \sqrt{159} \\
& x=4 \pm \frac{\sqrt{157}}{3} \\
& \text { 6. } \begin{array}{l}
(x-1)^{2} \\
+\mid 21=0 \\
\sqrt{(x-1)^{2}}-\sqrt{-21}=-121
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
x-1= \pm \| i \\
+1 \\
x=1 \pm 11
\end{array}
\end{array}
\end{aligned}
$$

6.3 Quadratic Formula

Solving for $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ex: Solve: $\begin{aligned} 3 x^{2}-4 x & =8 \\ -8 & -8\end{aligned} \quad \begin{aligned} 3_{2} x^{2}-4 x-8 & =0\end{aligned}$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(3)(-8)}}{2(3)}
$$

$$
=\frac{4 \pm \sqrt{16+96}}{6}
$$

$$
=\frac{25 \pm \sqrt{112}}{6}
$$

$$
=\frac{4 \pm \sqrt{16} \sqrt{7}}{6}
$$

Discriminant: Tell you how
many solutions the ne are.

$$
b^{2}-4 a c
$$

1. $b^{2}-4 a c>0$, there are 2 real solution
2. $b^{2}-4 a c=0$, there is 1 real solution
3. $b^{2}-4 a c<0$, there an 2 imaginary solutions

Ex: Use discriminants to determine the number of solutions to:

$$
\begin{aligned}
& 4 x^{2}-\sqrt{x}+3=0 \\
& b^{2}-4 a c \\
& (-1)^{2}-4(4)(3) \\
& 1-48
\end{aligned}
$$

$$
\int_{a} x^{2}-\frac{1 x}{b}-20=0
$$

$$
b^{2}-4 a c
$$

$$
(-1)^{2}-4(1)(-20)
$$

$$
1+80
$$

81
2 real solutions

$$
\begin{gathered}
E x: \quad 3 x^{2}-4=0 \\
b^{2}-4 a c \\
(0)^{2}-4(3)(-4) \\
48 \\
\text { real sol. }
\end{gathered}
$$

HW: p. 389
14-52 even, odds extra credit

