11.

$$
630=\frac{x}{x} \cdot \frac{100-2 x}{2}
$$

$$
630=\frac{100 x-\frac{1}{2} x^{2}}{2}
$$

$$
1260=100 x-2 x^{2}
$$

$$
\frac{-100 x+2 x^{2}-100 x+2 x^{2}}{2 x^{2}-100 x+1260}=0
$$

$$
\frac{2 x^{2}}{2}-\frac{100 x}{2}+\frac{1260}{2}=\frac{0}{2}
$$

$$
x^{2}-50 x+630=0
$$

$$
(x)=0
$$

9.

$$
\begin{aligned}
& A=l \omega \\
& 312=x(50-2 x) \\
& 312=50 x-2 x= \\
& -312=312 \\
& 0=-\frac{2 x^{2}+\frac{50 x}{-2}-\frac{312}{-2}}{-2} \\
& 0=x^{2}-25 x+156 \\
& 0=(x-12)(x-13) \\
& x-12=0 \text { or } x-73=0 \\
& x=12 \mathrm{ft} \text { or }(x=13 f t \\
& 26+4 \mathrm{ft}
\end{aligned}
$$

6.4 Apps. of Quadrates

Interest Problem:
$A=P(1+r)^{2} \quad$ for 2 years)
A =amount in your account
$P=$ original investment
$r=$ interest rate (decimal rate)
Ex: Find the interest rate if a deposit of $\$ 5,000$ increases to $\$ 5798.25$ over 2 yens

$$
\begin{aligned}
& A=P(1+r)^{2} \\
& \frac{5798.25}{5000}=\frac{5000(1+r)^{2}}{5000} \\
& \sqrt{1.16} \sqrt{(1+r)^{2}} \\
& 1.08=1+r \\
& -1=-1 \\
& .08=r \\
& r=8 \%
\end{aligned}
$$

Free Falling object
A model rocket is projected Straight upward from ground level according to the equation $h=-16 t^{2}+192 t, h$ is hight, ti time
a) After how many seconds is
the height of the rocker 432 ft ?

$$
\begin{aligned}
& 432=-16 t^{2}+192 t \\
& -432 \quad-432 \\
& \frac{0}{0}=\frac{-16 t^{2}}{-16}+\frac{192}{-16} t \cdot \frac{432}{-16} \\
& 0=t^{2}-12 t+27 \\
& 0=(t-3)(t-9) \\
& 0=t-3 \text { or } 0=t-9 \\
& t=3 \sec \text { or } t=9 \mathrm{sec} \\
&
\end{aligned}
$$

b) After how many seconds does the rocket hit Th ground?

$$
\begin{gathered}
h=-16 t^{2}+192 t \\
0=-16 t^{2}+192 t \\
0=-16 t(t-12) \\
-16 t=0 \text { or } t-12=0 \\
t-\sec \quad t=12 \mathrm{sec}
\end{gathered}
$$

$$
\begin{aligned}
& \text { p. } 398 \\
& 18-36 \text { even } \\
& \text { odds extra credit }
\end{aligned}
$$

