$$
\begin{aligned}
& \text { D.CDE and NMN } \\
& \begin{array}{l}
C D=\frac{1.5}{1.7}=0.808 .2 .5 \\
\frac{e_{C}}{M L}=\frac{1.4}{1.6}=0.875(\mathrm{ENO} \mathrm{M}
\end{array} \\
& \begin{array}{c}
0-4+ \\
5.84 \\
94
\end{array}
\end{aligned}
$$

7.3 AA, SSS, SAS

Angle -Angle Post.
if $2 \dot{L}^{\text {s }}$ of a Δ are \cong to 2 is of another Δ, then the d's are \sim.
Ex:
B

Explain why ~ +
a singlarty statement
$\angle A \cong \angle D$ since theine both r.
$\angle B C A \cong \angle E(D)$ since the yep vert. L's.
$\triangle A B C \sim \triangle D E C$ by $A A$.

SSS: if 3 sides of 1Δ are proportional to 3 sides of $a_{b} n_{A}+y_{s}$ er Δ_{a}, then they are. $\frac{\lambda_{C} b^{n} A}{A} \frac{a}{A}=\frac{b}{B}=\frac{C}{C}$
SAS : if ${ }^{c} 2$ sides of 1Δ are proportional to 2 sides of another \triangle and the included I 's are \cong, then the Δ^{\prime} are $\widetilde{\lambda}$.

$$
\begin{aligned}
& \frac{P Q}{S T}=\frac{Q R}{T V}=\frac{R P}{V S} \\
& \frac{3}{4.5}=\frac{3}{4.5}=\frac{2}{3}
\end{aligned}
$$

$$
\overline{.6} \quad \overline{6} \quad . \overline{6} \text { (HS }
$$

veriff similarity

$$
\begin{aligned}
& \angle D \cong \angle H \\
& \frac{D E}{J W}=\frac{D F}{k H} \\
& \frac{2}{1}=\frac{5.5}{2.9} \\
& 2=2
\end{aligned}
$$

$$
\begin{aligned}
& p .474 \\
& 1-6,10-16,19-24
\end{aligned}
$$

