5

$\frac{54 w}{54}=\frac{16}{54}$
$w=.3$
6.

$$
\begin{aligned}
& \frac{16 m}{n}=\frac{6 n}{n} \quad \frac{m}{n} \\
& \frac{16 \frac{m}{n}=\frac{6}{16}}{16}=\frac{3}{8}
\end{aligned}
$$

$$
\text { 7. } \begin{aligned}
220 \mathrm{ft} \cdot \frac{1}{400} & =55 \times 12=6.6 \mathrm{im} . \\
160 \mathrm{f} \cdot \frac{1}{400} & =4 \times 12=4.8 \mathrm{in}
\end{aligned}
$$

7.4 Properties of ~ $\Delta^{\text {s }}$
Δ proportionality $+h_{m}$:
if a line 11 to a side of a Δ intersects the other 2 sides, then it divides those 2 sides proportionally.

$$
\frac{B E}{A B}=\frac{B D}{C B}
$$

Find Us

$x=5.6$

Converse of Δ prop. tho if a line divides 2 sides of a Δ proportionally, then it's 11 to the $3^{\frac{2}{d}}$ side.

is $\overline{D E} \| \overline{B C}$?

$$
\begin{aligned}
& \frac{8}{20}=\frac{10}{25} \\
& \frac{2}{5}=\frac{2}{5}
\end{aligned}
$$

Yes, since sidos are propurtionate, so by $\overline{D E} \| \overline{B C}$ by cunverie of Δ prop. ttom.

Two Transversal Proportionality the
if 3 or more 11 lines intersect 2 transversals, then it divides the transuersats proportionally.

$$
\frac{A C}{C E}=\frac{B D}{D F} \quad \frac{A C}{A E}=\frac{B D}{B F}
$$

$\triangle<$ bisector the
an L bisector of a Δ divides the opp. Sides in to 2 segments whose lengths am proportional to the lengths of the other 2 sides

$$
\frac{A D}{D C}=\frac{A B}{B C}
$$

$$
p .484 \quad 1-20
$$

