7.6 Graphing Rational Expressions

Asymptotes: imaginary limes a graph cannot pass through.

$$
E_{x}:
$$

Find asymptotes: let $f(x)=\frac{p(x)}{q(x)}$, then
(1) $f(x)$ has a V.A. at all x where $\varepsilon(x)=0$
(2) $f(x)$ has a H.A. if:
i) the degree of $p(x)<q(x)$, then $y=0$ is the H.A.
ii) the degree of $p(x)=q(x)$, thin $y=\frac{a}{b}$ is the HA. where a is the leading coefficient of $p(x)$ and b is the lading coefficient of $q(x)$
iii) the degree of $p(x)>q(x)$, then there is no H.A.

Find the א.A. and H.A. of

$$
f(x)=\frac{2 x^{2}}{x^{2}-1}
$$

$$
g(x)=\frac{2 x}{3 x^{2}+1}
$$

$$
h(x)=\frac{x^{2}}{x-7}
$$

To graph, find all asymptotes, and draw them in, then use our calculator to find " 3 " points on either side of the asymptote.
sketch the graph of

$$
f(x)=\frac{2}{x-3}
$$

$$
g(x)=\frac{2 x-1}{x}
$$

p.483, 4-44 everyother every even E.C.

