8.

$5.625 \sqrt{3}$

14.

$$
x^{2}=60.64
$$

$$
\sqrt{x^{2}}=3840
$$

$$
x=62 . \mathrm{m}
$$

$$
\begin{aligned}
& 12^{2}=4(4+x) \quad z^{2}=32 \cdot 4 \\
& \begin{aligned}
& 144=16+4 x \\
&-16-16
\end{aligned} \quad \sqrt{z^{2}}=\sqrt{128} \\
& \frac{-16-16}{\frac{128}{4}=\frac{4 x}{4}} \quad x=32 \quad z=11.3 \\
& y^{2}= \\
& \begin{array}{c}
0-7+ \\
8-15 \checkmark \\
16 \uparrow=
\end{array}
\end{aligned}
$$

8.2 Trigratios

- ratio of 2 sides of a rt. Δ.

Trigratios
i) sine: the sine of an \angle is the ratio of the opposite leg and the hypotenuse.

$$
\sin A=\frac{q}{c}
$$

cosine: the cosine of an \angle is the ratio of the side adjacent and the hypotenuse.

$$
{ }_{c}^{a} \cos A=\frac{b}{c}
$$

tangent. the tangent of an \angle is the ratio of the apposite side to the adjacent side.

$$
{ }^{B}{ }^{B}{ }^{B} \tan A=\frac{a}{b}
$$

$$
\sin =\frac{o p p}{n_{y p}} \quad \cos =\frac{a d j}{h_{y p}} \quad \tan =\frac{o p p}{a j j}
$$

SOH CAHTOA

$\sin k=\frac{0}{H}=\frac{11}{61}$
$\cos J=\frac{A}{H}=\frac{11}{61}$
$\tan K=\begin{aligned} & H=61 \\ & \frac{0}{A}=\frac{11}{60}\end{aligned}$

Find the $\cos 30^{\circ}$.

assume, 30-60-90

$$
\begin{aligned}
& 45-45-90 \\
& \text { that }+x=1
\end{aligned}
$$

$$
\cos 30=\frac{A}{H}=\frac{\sqrt{3}}{2}
$$

Find $\tan 4 \bar{s}$

$$
\begin{aligned}
\tan 45 & =\frac{0}{17} \\
& =\frac{1}{1} \\
& =0
\end{aligned}
$$

Find $B C$

$$
\begin{aligned}
& \frac{x \tan 15}{\tan 15}=\frac{10.2}{\tan 15} \\
& x=\frac{10.2}{\tan 15} \\
& x=38.067
\end{aligned}
$$

$F D$

$$
\begin{gathered}
x \cos 39=\frac{20}{\cos 37} \frac{20}{\cos 39} \\
x=\frac{20}{\cos 39} \\
x=25.735
\end{gathered}
$$

p.529 $2-42$ even odds extra credit

