AP Test Review - Describing Relationships

I. Scatterplots

- A. Explanatory and Response Variables
- B. Analyzing scatterplots
 - a) Direction Positive or Negative
 - b) Form Linearity or curved
 - c) Strength
 - d) Outliers
- C. Correlation, r Describes a linear relationship between 2 quantitative variables.
 - a) $-1 \le r \le 1$
 - b) not a resistant measure
 - c) correlation DOES NOT mean causation!!

Remember, r only measures strength of linear relationships. Do not use if the relationship is not linear.

When analyzing a scatterplot, always do so in context of the problem.

II. Least-Squares Regression Line (LSRL)

A.
$$\hat{y} = a + bx$$
 or $\hat{y} = b_0 + b_1x$

- a) used for prediction of a scatterplot
- b) calculate on your calculator or using formula on sheet
- c) always goes through (\bar{x}, \bar{y})
- d) the coefficient of determination, r^2 , gives the fraction of variation in the values of y that is accounted by the LSRL of y on x (i.e. overall measure of success the LSRL is in relating x and y)
- B. Residuals
 - a) difference of observed and predicted y values
 - b) observed y predicted y or residual = y \hat{y}
 - c) LSRL makes the residuals as small as possible
- C. Residual plot*
 - a) plot of residuals (y axis) against the explanatory variable (x axis_
 - b) assess whether a linear model is appropriate (if well scattered about y = 0)

Tips and Common Mistakes:

- Remember to label and title all graphical displays
- Be aware of Minitab output on p. 181
- An observation is influential if removing is drastically changes the result of a calculation
- Beware of extrapolation when using LSRL's
- You should be able to interpret slopes, y-intercepts, correlation, etc. in context
- LSRL's often replace meaningful names instead of x and \hat{y} , for instance: $\widehat{salary} = 40,000 + .1$ (commission)
- Transforming for linearity, i.e. plotting logs of response variable against explanatory variable if data is exponential.