32. A catch of five fish of a certain species yielded the following ounces of protein per pound of fish: 3.1, 3.5, 3.2, 2.8, and 3.4. What is a 90% confidence interval estimate for ounces of protein per pound of this species of fish?

9. (D

10. (0

11. (E

12. (I

13. (

14. ()

15. (

335

16.

17.

18.

19.

20.

(A)
$$3.2 \pm 0.202$$

(B)
$$3.2 \pm 0.247$$

(C)
$$3.2 \pm 0.261$$

(D)
$$4.0 \pm 0.202$$

(E)
$$4.0 \pm 0.247$$

Answer Key

1. C	7. D	13. C	19. B	25. C	31: C
2. D	8. B	14. D	20. D	26. E	32. C
3. A	9. D	15. E	21. A	27. E	<i>32</i> . 0
4. D	10. C	16. E	22. B	28. B	
5. E	11. E	17. E	23. C	29. E	
6. A	12. B	18. A	24. A	30. D	

Answers Explained

- 1. (C) The critical z-scores will go from ± 1.96 to ± 2.576 , resulting in an increase in the interval size: $\frac{2.576}{1.96} = 1.31$ or an increase of 31%.
- 2. **(D)** Increasing the sample size by a multiple of d divides the interval estimate by \sqrt{d} .
- 3. (A) The margin of error varies directly with the critical z-value and directly with the standard deviation of the sample, but inversely with the square root of the sample size.
- 4. **(D)** Although the sample proportion *is* between 77% and 87% (more specifically, it is 82%), this is not the meaning of ±5%. Although the percentage of the entire population is likely to be between 77% and 87%, this is not known for certain.
- 5. (E) There is no guarantee that 13.4 is anywhere near the interval, so none of the statements are true.
- 6. (A) The margin of error has to do with measuring chance variation but has nothing to do with faulty survey design. As long as n is large, s is a reasonable estimate of σ; however, again this is not measured by the margin of error. (With t-scores, there is a correction for using s as an estimate of σ.)
- 7. (D) $\sigma_{\hat{p}} = \sqrt{\frac{(.39)(.61)}{500}}$ and the critical z-scores for 90% confidence are ±1.645.

8. **(B)**
$$\sigma_{\hat{p}} = \sqrt{\frac{(.75)(.25)}{1000}} = .0137$$

.75 ± 1.96(.0137) = .75 ± .027 or (.723, .777)

347

tein ter-

9. **(D)**
$$\sigma_{\hat{p}} = \sqrt{\frac{(.17)(.83)}{1703}} = .0091$$

 $z(.0091) = .02$ $z = 2.20$, $.9861 - .0139 = 97.2\%$

10. **(C)**
$$1.645\left(\frac{.5}{\sqrt{n}}\right) \le .04, \sqrt{n} \ge 20.563, n \ge 422.8$$
, so choose $n = 423$.

- 11. (E) $\frac{19}{20} = 95\%$; $1.96\left(\frac{.5}{\sqrt{n}}\right) \le .03$, $\sqrt{n} \ge 32.67$, $n \ge 1067.1$, and so the pollsters should have obtained a sample size of at least 1068. (They actually interviewed 1148 people.)
- 12. **(B)** $\sigma_{\bar{x}} = \frac{0.35}{\sqrt{49}}$ and with df = 49 1 = 48, the critical *t*-scores are ±1.677.
- 13. (C) Using t-scores: $28.5 \pm 2.045 \left(\frac{1.2}{\sqrt{30}} \right) = 28.5 + 0.45$.
- 14. (D) $\sigma_x = \frac{1.52}{\sqrt{64}} = 0.19$, $\frac{0.38}{0.19} = 2$, and $.4772 + .4772 = .9544 \approx 95\%$.
- 15. (E) Using t-scores:

$$335 \left[9540 \pm 2.756 \left(\frac{1205}{\sqrt{30}} \right) \right] = 335 \left(9540 \pm 606.3 \right) = \$3,196,000 \pm \$203,000.$$

- 16. (E) $1.96\left(\frac{1.1}{\sqrt{n}}\right) \le 0.2$, $\sqrt{n} \ge 10.78$, and $n \ge 116.2$; choose n = 117.
- 17. (E) To divide the interval estimate by d without affecting the confidence level, multiply the sample size by a multiple of d^2 . In this case, 4(50) = 200.
- 18. (A)

$$n_1 = 361 n_2 = 86$$

$$\hat{p}_1 = \frac{210}{361} = .582 \hat{p}_2 = \frac{34}{86} = .395$$

$$\sigma_d = \sqrt{\frac{(.582)(.418)}{361} + \frac{(.395)(.605)}{86}} = .0588$$

$$(.582 - .395) \pm 1.96(.0588) = .187 \pm .115$$

19. (B)

$$n_1 = 300 \quad n_2 = 400$$

$$\hat{p}_1 = .65 \quad \hat{p}_2 = .48$$

$$\sigma_d = \sqrt{\frac{(.65)(.35)}{300} + \frac{(.48)(.52)}{400}} = .0372$$

$$(.65 - .48) \pm 2.576(.0372) = .17 \pm .096$$

(D) $1.645 \left(\frac{.5\sqrt{2}}{\sqrt{n}} \right) \le .03$, $\sqrt{n} \ge 38.77$, and $n \ge 1503.3$; the researcher should choose a sample size of at least 1504.

rease

mate

rectly root

ntage s not

ne of

a rea

)

21. (A) $\sigma_d = \sqrt{\frac{(19.1)^2}{347} + \frac{(19.9)^2}{561}}$ and with $df = \min(347 - 1,561 - 1)$, critical resconding

22. **(B)**
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{(6.3)^2}{274} + \frac{(6.3)^2}{90}} = 0.765$$

$$(33.0 - 28.6) \pm 1.645(0.765) = 4.4 \pm 1.26$$

23. (C)
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{(4.5)^2}{n} + \frac{(4.5)^2}{n}} = \frac{6.364}{\sqrt{n}}$$

 $1.645 \left(\frac{6.364}{\sqrt{n}}\right) \le 1, \sqrt{n} \ge 10.47, n \ge 109.6$; choose $n = 110$.

- 24. (A) The sample mean is at the center of the confidence interval; the lower confidence level corresponds to the narrower interval.
- 25. (C) Narrower intervals result from smaller standard deviations and from larger sample sizes.
- 26. (E) Only III is true. The 90% refers to the method; 90% of all intervals obtained by this method will capture μ . Nothing is sure about any particular set of 100 intervals. For any particular interval, the probability that it captures μ is either 1 or 0 depending on whether μ is or isn't in it.
- 27. **(E)** In determining confidence intervals, one uses sample statistics to estimate population parameters. If the data are actually the whole population, making an estimate has no meaning.

28. **(B)**
$$\frac{1.88(.5)\sqrt{2}}{\sqrt{n}} \le .07 \text{ gives } \sqrt{n} \ge 18.99 \text{ and } n \ge 360.7.$$

- 29. (E) With df = 15 1 = 14 and .05 in each tail, the critical *t*-value is 1.761.
- 30. **(D)** $\bar{x} = 4.048$, s = 2.765, df = 20, and

$$4.048 \pm 1.725 \left(\frac{2.765}{\sqrt{21}} \right) = 4.048 \pm 1.041.$$

31. (C) The confidence interval estimate of the set of nine differences is

$$11.61 \pm 2.306 \left(\frac{4.891}{\sqrt{9}}\right) = 11.61 \pm 3.76.$$

32. (C)
$$df = 4$$
, and $3.2 \pm 2.132 \left(\frac{0.274}{\sqrt{5}} \right) = 3.2 \pm 0.261$.