1-1 Study Guide and Intervention

Functions

Describe Subsets of Real Numbers The set of real numbers includes the rationals \mathbb{Q} , irrationals \mathbb{I} , integers \mathbb{Z} , wholes \mathbb{W} , and naturals \mathbb{N} .

One way to describe a subset of the real numbers is to use set-builder notation.

Variable inquality, variable 5 et 3

is a part of such that

Another way is to use interval notation.

R. Another way is to use interval notation.

[or(smallst value, biggest value) or]

Example Describe x > 18 using set-builder notation and interval notation.

The set includes all numbers that are greater than 18 but are not equal to 18.

Set-builder notation: $\{x \mid x > 18, x \in \mathbb{R}\}$

The vertical line | means "such that." The symbol \in means "is an element of." Read the expression as the set of all x such that x is greater than 18 and x is an element of the set of real numbers.

Interval notation: $(18, \infty)$

Use parentheses on the left because 18 is not included in the set. Use parentheses with infinity since it never ends.

Exercises

Write each set of numbers in set-builder and interval notation, if possible.

$$\begin{cases}
1. \{17, 18, 19, 20, ...\} \\
\times \times \times \geq 17, \times \in \mathbb{N}
\end{cases}$$

$$\begin{cases}
2. x \leq -2 \\
\times \times \times \leq -2, \times \in \mathbb{R}
\end{cases}$$

$$\begin{cases}
\times \times \times \leq -2, \times \in \mathbb{R}
\end{cases}$$

$$\begin{cases}
\times \times \times \leq -2, \times \in \mathbb{R}
\end{cases}$$

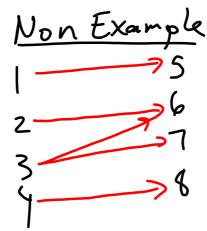
$$\begin{cases}
\times \times \times \leq -2, \times \in \mathbb{R}
\end{cases}$$

$$\begin{cases}
\times \times \times \leq -2, \times \in \mathbb{R}
\end{cases}$$

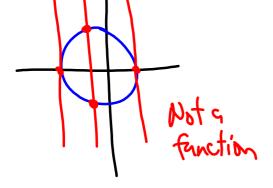
Functions

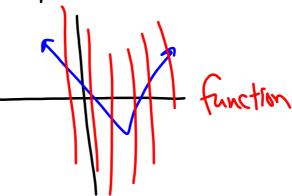
A function relates a value from one set to One Value of another sot.

Example	
1	> 5
2—	76
3	7
4—	→ 8



Vertical line test: if a vertical line passes thru a graph in exactly one spot, then it's a function.





Example 1 Find each function value.

a. If
$$f(x) = 4x^3 + 6x^2 + 3x$$
, find $f(-2)$. plug -2 in for x .

$$f(x) = 4x^3 + 6x^2 + 3x$$
 Original function $f(-2) = 4(-2)^3 + 6(-2)^2 + 3(-2)$ Substitute -2 for x . $= -32 + 24 - 6$ or -14 Simplify.

b. If
$$g(x) = \begin{cases} \sqrt{x} + 1 \text{ if } x \le 4\\ 3x \text{ if } 4 < x < 10, \text{ find } g(6) \text{ and } g(10).\\ 2x^2 - 15 \text{ if } x \ge 10 \end{cases}$$

Look at the "if" statements to see that 6 fits into the second rule, so g(6) = 3(6) or 18.

The value 10 fits into the third rule, so $g(10) = 2(10)^2 - 15$ or 185.

Exercises

Find each function value.

1. If
$$f(x) = 5x^{2} - 4x - 6$$
, find $f(3)$.

$$f(3) = 5(3) - 4(3) - 6$$

$$f(3) = 45 - 12 - 6$$

$$f(3) = 27$$
4. If $f(x) = \begin{cases} 2x + 10 & \text{if } 3 \le x < 8 \\ 42 & \text{if } x \ge 8 \end{cases}$ find $f(3)$ and $f(8.5)$.

$$f(3) = 2x + 10$$

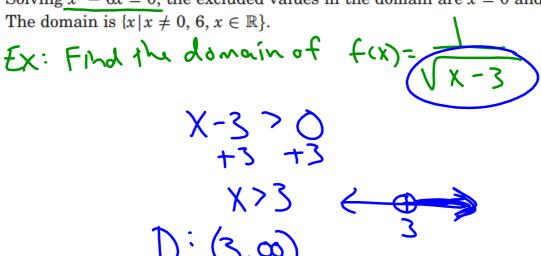
$$f(3) = 2(3) + 10$$

$$f(3) = 16$$

State the domain of $f(x) = \frac{3+x}{x^2-6x}$.

When the denominator of $\frac{3+x}{x^2-6x}$ is zero, the expression is undefined.

Solving $x^2 - 6x = 0$, the excluded values in the domain are x = 0 and x = 6.



Hw: p. 9 3,7,13,17,19,27,31,37,41,45,51,53