Study Guide and Intervention 1-5

Parent Functions and Transformations

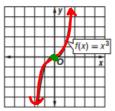
Parent Functions A parent function is the simplest of the functions in a family.

Parent Function	Form	Notes
constant function	f(x) = c	graph is a horizontal line
identity function	f(x) = x	points on graph have coordinates (a, a)
quadratic function	$f(x) = x^2$	graph is U-shaped
cubic function	$f(x) = x^3$	graph is symmetric about the origin
square root function	$f(x) = \sqrt{x}$	graph is in first quadrant
reciprocal function	$f(x) = \frac{1}{x}$	graph has two branches
absolute value function	f(x) = x	graph is V-shaped
greatest integer function	f(x) = x	defined as the greatest integer less than or equal to <i>x</i> ; type of step function

Describe the following characteristics of the graph of the parent function $f(x) = x^3$: domain, range, intercepts, symmetry, continuity, end behavior, and intervals on which the graph is increasing/decreasing.

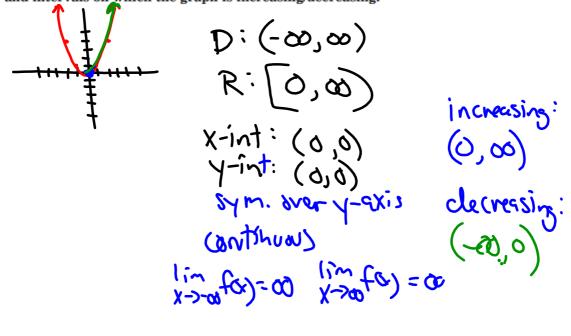
The graph confirms that $D = \{x \mid x \in \mathbb{R}\}$ and $R = \{y \mid y \in \mathbb{R}\}$.

The graph intersects the origin, so the x-intercept is 0 and the y-intercept is 0.


It is symmetric about the origin and it is an odd function:
$$f(-x) = -f(x)$$
.

The graph is continuous because it can be traced without lifting the pencil off the paper.

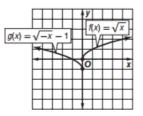
As x decreases, y approaches negative infinity, and as x increases, y approaches positive infinity.


$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

The graph is always increasing, so it is increasing for $(-\infty, \infty)$.

Exercise

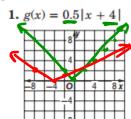
Describe the following characteristics of the graph of the parent function $f(x) = x^2$: domain, range, intercepts, symmetry, continuity, end behavior, and intervals on which the graph is increasing/decreasing.

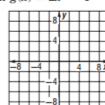

Parent Functions and Transformations

Transformations of Parent Functions Parent functions can be transformed to create other members in a family of graphs.

1.
.]
1.

Identify the parent function f(x) of $g(x) = \sqrt{-x} - 1$, and describe how the graphs of g(x) and f(x) are related. Then graph f(x) and g(x) on the same axes.


The graph of g(x) is the graph of the square root function $f(x) = \sqrt{x}$ reflected in the *y*-axis and then translated one unit down.



Exercises

Identify the parent function f(x) of g(x), and describe how the graphs of g(x) and f(x) are related. Then graph f(x) and g(x) on the same axes.

2.
$$g(x) = 2x^2 - 4$$

parent function: f(x)=|x| Vertical dilation horizontal translation HW: p. 52, #3, 7, 11, 15, 21, 29, 33