$$tan \frac{\pi}{2} = tan \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= tan \frac{\pi}{3} - tan \frac{\pi}{4}$$

$$= tan \frac{\pi}{3} - tan \frac{$$

KeyConcept The *n*th Term of an Arithmetic Sequence

Words

The *n*th term of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n-1)d$.

Example

The 16th term of 2, 5, 8, ... is $a_{16} = 2 + (16 - 1) \cdot 3$ or 47.

Example 1: Find the 38th term of the arithmetic sequence $-7, -5, -3, \dots$

First find the common difference.

$$a_2 - a_1 = -5 - (-7)$$
 or 2

$$a_3 - a_2 = -3 - (-5)$$
 or 2

Use the explicit formula $a_n = a_1 + (n-1) d$ to find a_{38} . Use n = 38, $a_1 = -7$, and d = 2.

$$a_{38} = -7 + (38 - 1)2$$

= 67

Example 2: Write an arithmetic sequence that has three arithmetic means between 3.2 and 4.4.

The sequence will have the form 3.2, ?, ?, 4.4. Find d.

$$a_n = a_1 + (n-1) d$$
 Formula for *n*th term of arithmetic sequence

$$4.4 = 3.2 + (5 - 1) d$$
 Substitute.

$$4.4 = 3.2 + 4d$$
 Simplify.

$$d = 0.3$$

Determine the arithmetic means recursively.

$$a_2 = 3.2 + 0.3 = 3.5$$
, $a_3 = 3.5 + 0.3 = 3.8$, $a_4 = 3.8 + 0.3 = 4.1$

The sequence is 3.2, 3.5, 3.8, 4.1, 4.4.

Exercises

1. Find the 100th term of the arithmetic sequence 1.6, 2.3, 3,

2. Find the 28th term of the arithmetic sequence $-1, -3, -5, \dots$

$$a^{58} = -1 + (58 - 1)(-5)$$

3. Find the first term of the arithmetic sequence for which $a_{15} = 30$ and d = 1.4.

$$a_n = a_1 + (n-1)d$$

 $30 = a_1 + (15-1)|.4$
 $30 = a_1 + 19-6$
 $a_1 = 10.4$

5. Write an arithmetic sequence that has three arithmetic means between 17 and 39.

6. Write an arithmetic sequence that has seven arithmetic means between -2 and 16.

7. Find the explicit and recursive formula for the nth term in the sequence: 2, 5, 8.....

$$\frac{\text{Recursive}}{Q_1=2}$$

$$Q_n = Q_{n-1} + 2$$

Explicit

$$a_n = a_1 + (n-1)d$$
 $a_n = 2 + (n-1)3$
 $a_n = 2 + 3n - 3$
 $a_n = 3n-1$

KeyConcept Sum of a Finite Arithmetic Series

The sum of a finite arithmetic series with *n* terms or the *n*th partial sum of an arithmetic series can be found using one of two related formulas.

Formula 1

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Formula 2

$$S_n = \frac{n}{2} [2a_1 + (n-1)d]$$

Example 1: Find the sum of the first 50 terms in the series 11 + 14 + 17 + ... + 158.

Because the first and last terms are known, use $S_n = \frac{n}{2}(a_1 + a_n)$.

Substitute 50 for n, 11 for a_1 , and 158 for a_{50} .

$$S_{50} = \frac{50}{2}(11 + 158)$$
$$= 4225$$

Example 2: Find the 23rd partial sum of the arithmetic series $173 + 162 + 151 + \dots$

The 23rd term in not known. The first term is known and the common difference can be found by subtracting

$$162 - 173 = -11$$
. Use $S_n = \frac{n}{2} [2a_1 + (n-1) d]$.

$$S_{23} = \frac{23}{2} [2(173) + (23 - 1)(-11)]$$

= 1196

Exercises

2. Find the sum of the first 25 terms in the series 7 + 10 + 13 + ... + 79.

$$S_{2r} = \frac{25}{2} (7 + 79)$$

 $S_{2r} = 1,075$

3. Find the 53rd partial sum of the arithmetic series $12 + 20 + 28 + \dots$

4. Find the sum of the first 42 terms in the series 1.5 + 2 + 2.5 + ... + 22.

5. Find
$$\sum_{n=3}^{42} (3n + 1)$$
.

6. Find $\sum_{n=1}^{42} 2n$.