

2-6 Study Guide and Intervention

Nonlinear Inequalities

Polynomial Inequalities Real zeros divide the x-axis into intervals for which the value of f(x) is positive (above the x-axis) or negative (below the x-axis). A <u>sign chart</u> shows these real zeros and the sign of f(x) in that interval as either positive (+) or negative (-).

Example: Solve each inequality.

a. $x^2 - 3x - 15 > 3$

 $x^{2} - 3x - 15 > 3$ $x^{2} - 3x - 18 > 0$

Original inequality

Subtract 3 from each side of the inequality.

(x+3)(x-6) > 0

Factor.

Let f(x) = (x + 3)(x - 6).

f(x) has real zeros at x = -3 and x = 6.

Create a sign chart using these real zeros. Substitute any number from each interval for x in the factored function rule. Write the sign of each factor and the sign of the product of the factors.

Because we are solving for when $x^2 - 3x - 18 \ge 0$, we choose the intervals for which the product is positive. The solution is $(-\infty, -3)$ or $(6, \infty)$.

b. $x^2 + 2x + 2 < 0$

The related function has no real zeros. The graph is always above the x-axis so the values of f(x) are always positive. Because we are solving for when the values are negative, the equation has no real solution.

Exercises Solve each inequality.

2.6 notes - nonlinear inequalities.notebook	October 25, 2016
Rational Inequalities A rational inequality can change signs at its points of discontinuity as y You must include the zeros of both the numerator and denominator in your sign chart.	well as its real zeros.

Example: Solve
$$\frac{2}{x-4} + \frac{1}{x+1} > 0$$
.

Original inequality

$$\frac{2x+2+x-4}{(x-4)(x+1)} > 0$$
 Use the LCD, $(x-4)(x-1)$, to combine the fractions.

$$\frac{3x-2}{(x-4)(x+1)} > 0$$
 Simplify

Let $f(x) = \frac{3x-2}{(x-4)(x+1)}$. The zeros and undefined points are the zeros of the numerator, $x = \frac{2}{3}$, and denominator, x = 4 and x = -1. Create a sign chart using these numbers. Test x-values in each interval.

The solutions are the intervals for which the final sign is positive: $(-1,\frac{2}{3})$ or $(4,\infty)$.

Exercises Solve each inequality.

$$\frac{1 \cdot \frac{x-1}{x+2} > 3}{-3 - 3}$$

$$\frac{x+2}{x+2} - \frac{1}{x+2} < 0$$

$$\frac{x+2}{x-4} - \frac{1}{x+2} < 0$$

$$\frac{x+2}{x-4} - \frac{1}{x+2} < 0$$

$$\frac{x+2-x+4}{x-4} < 0$$

$$\frac{x+$$

HW' P.145, 1,7,13,21,27,29,31