$$74 \approx p(x) = .7(x) = x - .3(x)$$

 $5(x) = [.0575x = x + .0575x]$

73.
$$F(x) = \frac{9}{5}x + 32$$

 $Y = \frac{9}{5}x + 32$
 $Y = \frac{9}{5}y + 32$
 $\frac{32}{5}(x - 32) = (\frac{4}{5}y) = \frac{32}{5}(x - 32) = \frac{4}{5}(x)$

Study Guide and Intervention 3-2

Logarithmic Functions

Logarithmic Functions and Expressions The inverse relationship between logarithmic functions and exponential functions can be used to evaluate logarithmic expressions.

If b > 0, $b \neq 1$, and x > 0, then

The following properties are also useful.

$$\log_b 1 = 0 \qquad \qquad \log_b b = 1 \qquad \qquad \log_b b^x = x \qquad \qquad b^{\log_b x} = x, x > 0$$

$$log = log_{10}$$

Ex: $log S \approx .69$
Natural $log : ln = loge$
Ex: $ln S \approx 1.6$
 $ln l = 0$ $ln e = 1$ $ln e^{x} = x$ $e^{ln x} = x$

Example 1 Evaluate each logarithm.

a.
$$\log_5 \frac{1}{25}$$

$$\log_5 \frac{1}{25}$$

$$\log_5 \frac{1}{25} = y$$
 Let $\log_5 \frac{1}{25} = y$.

$$5^y = \frac{1}{2!}$$

 $5^y = \frac{1}{25}$ Write in exponential form. $5^y = 5^{-2}$ $\frac{1}{25} = 5^{-2}$ y = -2 Equality Prop. of Exponents

$$5^{y} = 5^{-2}$$

$$\frac{1}{25} = 5^{-2}$$

$$y = -2$$

Therefore,
$$\log_5 \frac{1}{25} = -2$$

because
$$5^{-2} = \frac{1}{25}$$
.

b. $\log_3 \sqrt{3}$

$$\log_3 \sqrt{3} = y$$

 $\log_3 \sqrt{3} = y$ Let $\log_3 \sqrt{3} = y$. Write in exponential form. $3^y = 3^{\frac{1}{2}}$ $3^{\frac{1}{2}} = \sqrt{3}$ Equality Prop. of Exponents

$$3^{y} = \sqrt{3}$$

$$3^{\frac{1}{2}} = \sqrt{3}$$

$$y = \frac{1}{2}$$

Therefore,
$$\log_3 \sqrt{3} = \frac{1}{2}$$

because $3^{\frac{1}{2}} = \sqrt{3}$.

because
$$3^{\frac{1}{2}} = \sqrt{3}$$
.

Example 2 Evaluate each expression.

a.
$$\ln e^7$$

$$\ln e^7 = 7 \quad \ln e^x = x$$

b.
$$e^{\ln 5}$$

$$e^{\ln 5}$$
 $e^{\ln 5} = 5$ $e^{\ln x} = x$

$$10^{\log 13} = 13$$
 $10^{\log x} = x$

Exercises

Evaluate each logarithm.

5.
$$\log_3 \frac{1}{81}$$

3. 3log₂ 2

Logarithmic Functions

Graphs of Logarithmic Functions The inverse of $f(x) = b^x$ is called the logarithmic function with base b, or $f(x) = \log_b x$, and read f of x equals the log base b of x.

Example Sketch and analyze the graph of $f(x) = \log_6 x$. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing.

Create a table of values for the inverse of the function, the exponential function $f^{-1}(x) = 6^x$.

x	-2	-1	0	1	2
f-1(x)	0.028	0.17	1	6	36

Since the functions are inverses, you can obtain the graph of f(x) by plotting the points $(f^{-1}(x), x)$.

Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ x-intercept: (1, 0)

Asymptote: y-axis

End behavior: $\lim_{x \to 0^+} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$

Increasing: $(0, \infty)$

Exercises

Sketch and analyze the graph of each function below. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing.

$$\mathbf{1.}\ g(x) = \log_3 x$$

2.
$$h(x) = -\log_3(x-2)$$

 $\frac{x}{9^{(0)}} \cdot \frac{1}{1} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{3}{9} \cdot \frac{9}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{9}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$

5.(-0,0) D:(0'0) asymptok:X=O

R:(-00,00)

1im for =-00

x-int: (1,0)

x->00 11m f(x) = 00 increasing (0,00)

HW: p. 178, #1-25 odd, 29, 35, 41, 45, 47, 51, 63