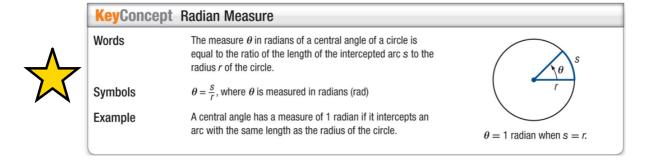
$$\frac{56}{56} = \frac{30}{80} = \frac{24}{15}$$

$$= \frac{2\sqrt{3}}{3}$$

$$= \frac{2\sqrt{3$$

11.
$$\frac{1}{10}$$
 $\frac{1}{10}$ $\frac{1}{$

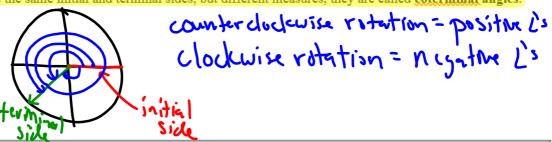


4-2 Study Guide and Intervention Degrees and Radians

Angles and Their Measures One complete rotation can be represented by 360° or 2π radians. Thus, the following formulas can be used to relate degree and radian measures.

KeyConcept Degree/Radian Conversion Rules
 1. To convert a degree measure to radians, multiply by π radians/180°.
 2. To convert a radian measure to degrees, multiply by 180°/π radians.

If two angles have the same initial and terminal sides, but different measures, they are called coterminal angles.



KeyConcept Coterminal AnglesDegreesRadiansIf α is the degree measure of an angle, then all angles
measuring $\alpha + 360n^{\circ}$, where n is an integer, are coterminal
with α .If α is the radian measure of an angle, then all angles measuring
 $\alpha + 2n\pi$, where n is an integer, are coterminal with α .

Example: Write each degree measure in radians as a multiple of π and each radian measure in degrees.

a. 36°

$$36^{\circ} = 36^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right)$$
 Multiply by $\frac{\pi \text{ radians}}{180^{\circ}}$

$$= \frac{\pi}{5} \text{ radians or } \frac{\pi}{5}$$
 Simplify

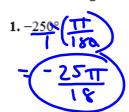
$$\mathbf{b.} - \frac{17\pi}{3}$$

$$-\frac{17\pi}{3}=-\frac{17\pi}{3}$$
 radians Multiply by $\frac{180^{\circ}}{\pi \text{ radians}}$

$$=-\frac{17\pi}{3} \text{ radians} \left(\frac{180^{\circ}}{\pi \text{ radians}}\right)=-1020^{\circ} \text{ Simplify}$$

Exercises

Write each degree measure in radians as a multiple of π and each radian measure in degrees.



2. 6°

8. $\frac{13\pi}{30}$

Identify all angles that are coterminal with the given angle.

$$\frac{13.-\frac{\pi}{2}}{2}+2n\pi$$

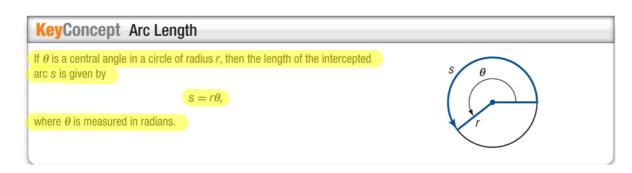
14.135° (135°+360°n)

15.
$$\frac{5\pi}{3}$$

Applications with Angle Measure The rate at which an object moves along a circular path is called its **linear speed**. The rate at which the object rotates about a fixed point is called its **angular speed**.

Suppose an object moves at a constant speed along a circular path of radius r.

If s is the arc length traveled by the object during time t, then the object's *linear speed* v is given by $V = \frac{s}{t},$ If θ is the angle of rotation (in radians) through which the object moves during time t, then the *angular speed* ω of the object is given by $\omega = \frac{\theta}{t}.$



The area A of a sector of a circle with radius r and central angle θ is

$$A = \frac{1}{2}r^2\theta,$$

where θ is measured in radians.

Example: Determine the angular speed and linear speed if 8.2 revolutions are completed in 3 seconds and the distance from the center of rotation is 7 centimeters. Round to the nearest tenth.

The angle of rotation is $8.2 \times 2\pi$ or 16.4π radians.

$$\omega = \frac{\theta}{t}$$
 Angular speed
$$= \frac{16.4\pi}{3} \qquad \theta = 16.4\pi \text{ radians and } t = 3 \text{ seconds}$$
 ≈ 17.17403984 Use a calculator.

Therefore, the ap 'ar speed is about 17.2 radians per second.

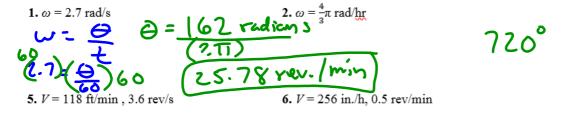
The linear speed is $\frac{r\theta}{t}$.

$$V=\frac{s}{t},$$
 Linear speed
$$=\frac{r\theta}{t} \qquad \qquad s=\frac{r\theta}{t}$$
 $s=\frac{r\theta}{t}$ $r=7$ centimeters, $\theta=16.4\pi$ radians, and $t=3$ seconds
$$=120.218278877 \qquad \text{Use a calculator.}$$

Therefore, the linear speed is about 120.2 centimeters per second.

Exercises

Find the rotation in revolutions per minute given the angular speed and the radius given the linear speed and the rate of rotation.



Ex: Change 61.325° to degrees, minutes, tseconds 61° 19' 30"

Hw: p.23.8 1-19 odd, 25, 27, 31, 35, 37, 43, 45