7-1 Study Guide and Intervention

Parabolas

Analyze and Graph Parabolas A parabola is the locus of all points in a plane equidistant from a point called the focus and a line called the directrix. The standard form of the equation of a parabola that opens vertically is $(x - h)^2 = 4p(y - k)$. When p is negative, the parabola opens downward. When p is positive, it opens upward. The standard form of the equation of a parabola that opens horizontally is $(y - k)^2 = 4p(x - h)$. When p is negative, the parabola opens to the left. When p is positive, it opens to the right.

Example: For $(x-3)^2 = 12(y+4)$, identify the vertex, focus, axis of symmetry, and <u>directrix</u>. Then graph the parabola.

The equation is in standard form and the squared term is x, which means that the parabola opens vertically. Because 4p = 12, p = 3 and the graph opens upward.

The equation is in the form $(x - h)^2 = 4p (y - k)$, so h = 3 and k = -4. Use the values of h, k, and p to determine the characteristics of the parabola.

vertex: (3, -4) (h, k) directrix: y = -7 y = k - p focus: (3, -1) (h, k + p) axis of symmetry: x = 3 x = h

Exercises

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.

vertex: (h,k) (3,-2)

focus: (h,ktp)
(3,-2+3)

axis of sym: X=h

directrix: Y=k-P Y=-2-3 Y=-5

Completing the Square Problems

Write $x^2 - 8x - y = -18$ in standard form. Identify the vertex, focus, axis of symmetry, and directrix.

$$\frac{\chi^{2}-8\chi-\gamma=-18}{+\gamma+4}$$

$$\chi^{2}-8\chi+16=\gamma-18+16$$

$$(\chi-4)^{2}-1(4-2)$$

$$4(4)$$

B. Write an equation for and graph a parabola with vertex (3, -2) and directrix y = -1.

The directrix is a horizontal line, so the parabola opens vertically. Because the directrix lies above the vertex, the parabola opens down.

Use the equation of the directrix to find p.

$$y = k - p$$
 Equation of directrix
 $-1 = -2 - p$ $y = -1, k = -2$
 $1 = -p$ Add 2 to each side.
 $-1 = p$ Multiply each side by -1 .

Substitute the values for h, k, and p into the standard form equation for a parabola opening vertically.

$$4p(y-k) = (x-h)^2$$
 Standard form
 $4(-1)[y-(-2)] = (x-3)^2$ $p = -1$, $h = 3$, and $k = -2$
 $-4(y+2) = (x-3)^2$ Simplify.

The equation for the parabola is $(x - 3)^2 = -4(y + 2)$. Use a table of values to graph the parabola.

Example: Write an equation for and graph a parabola with focus (-4, -3) and vertex (1, -3).

Because the focus and vertex share the same y-coordinate, the graph is horizontal. The focus is (h + p, k), so the value of p is -4 - 1 or -5. Because p is negative, the graph opens to the left.

Write the equation for the parabola in standard form using the values of h, p, and k.

$$(y-k)^2 = 4p (x-h)$$
 Standard form
 $[y-(-3)]^2 = 4 (-5) (x-1)$ $p=-5, h=1, \text{ and } k=-3$
 $(y+3)^2 = -20 (x-1)$ Simplify.

The standard form of the equation is $(y + 3)^2 = -20(x - 1)$.

Graph the vertex, focus, and parabola.

fors:
$$(y+b^{1}k)$$

fors: $(y+b^{1}k)$
 $(3^{2}-2)$

fors: $(y+b^{1}k)$
 $(3^{2}-2)$
 $(A+2)_{5} = 180(X-3)$
 $(A+2)_{5} = 180(X-24)$
 $(A+2)_{5} = 180X-262452$
 $(A+2)_{5} = 180X-26242$
 $(A+2)_{5} = 180X-2624$
 $(A+2)_{5} = 180X-2624$

C. Write an equation for and graph a parabola that has focus (-1, 7), opens up, and contains (3, 7).

$$(X-h)^{2} = 4p(Y-K)$$

$$focus = (h, k+p) = (-1, 1)$$

$$vertex = (h, k)$$

$$(3+1)^{2} = 4p(7-K)$$

$$16 = 4p(7-K)$$

$$4 = p(7-K)$$

vertex:(-1,5) ~ (-1,4) p=2 p=12

-5--K +:5 - K=-9

Write an equation for and graph a parabola with the given characteristics.

- **1.** focus (-1, 5) and vertex (2, 5)
- **2.** focus (1, 4); opens down; contains (-3, 1)

- 3. directrix y = 6; opens down vertex (5, 3)
- **4.** focus (1.5, 1); opens right; directrix x = 0.5

$$(x-h)^2 = 4p(y-k)$$

vertex: (h_1k)
 $h=5$ $k=3$

dimetrix:
$$k-p=y$$

$$\frac{-3}{-7}-\frac{-3}{-7}$$

$$\frac{-1}{-7}-\frac{3}{-7}$$

$$(x-5)^2 = 4(-5)(y-3)$$

$$\frac{x}{y}$$
 $(6-5)^2 = -12(y-3)$
 4 2.92 $y = 2.92$
 6 2.52