KeyConcept Parametric Equations

If f and g are continuous functions of t on the interval I, then the set of ordered pairs (f(t), g(t)) represent a **parametric curve**. The equations

$$x = f(t)$$
 and $y = g(t)$

are parametric equations for this curve, *t* is the parameter, and *I* is the parameter interval.

7-5 Study Guide and Intervention

Parametric Equations

Graph Parametric Equations Parametric equations are used to describe the horizontal and vertical components of an equation. Parameters are arbitrary values, usually time or angle measurement.

Example 1: Sketch the curve given by the parametric equations x = -3 + 4t and $y = t^2 + 3$ over the interval $-4 \le t \le 4$.

Make a table of values for $-4 \le t \le 4$.

			_			
t	x	У		t	x	У
-4	-19	19		0	-3	3
-3	-15	12		1	1	4
-2	-11	7		2	5	7
-1	-7	4		3	9	12
0	-3	3		4	13	19

Plot the (x, y) coordinates for each t-value and connect the points to form a smooth curve.

Example 2: Write x = 4t - 2 and $y = t^2 + 1$ in rectangular form.

$$x = 4t - 2$$
 Parametric equation for x
$$\frac{x+2}{4} = t$$
 Solve for t . Substitute $\frac{x+2}{4}$ for t in the equation for y .
$$= \frac{x^2 + 4x + 4}{16} + 1$$
 Square $x + 2 - 4$. Simplify.

The rectangular equation is $y = \frac{x^2}{16} + \frac{x}{4} + \frac{5}{4}$.

Exercises

Sketch the curve given by each pair of parametric equations over the given interval.

1.
$$x = t^2 + 4$$
 and $y = \frac{t}{6} - 3$; $-4 \le t \le 4$
2. $x = \frac{t}{3}$ and $y = \sqrt{t} + 2$; $0 \le t \le 8$
2. $y = \frac{t}{3}$ and $y = \sqrt{t} + 2$; $0 \le t \le 8$

What is the rectangular form of the

parametric equations?
$$\frac{1}{x}$$
 substitution method for the $\frac{1}{x^2+14}$ $\frac{1}{x^2+18}$ $\frac{1}$

Write $y = 5 \sin \theta$ and $x = 3 \cos \theta$ in rectangular form. Then graph the equation.

of solve for each trig function, then use the pythegramide

Projectile Motion Parametric equations are often used to simulate projectile motion. For an object launched at an angle θ with the horizontal at an initial velocity v_0 , where g is the gravitational constant, t is time, and h_0 is the initial height, the horizontal distance x can be found by $x = tv_0 \cos \theta$ and the vertical position y by $y = tv_0 \sin \theta - \frac{1}{2}gt^2 + h_0$.

Example: Luigi is kicking a soccer ball. He kicks the ball with an initial velocity of 35 feet per second at an angle of 48° with the horizontal. The ball is 2 feet above the ground when he kicks it. How far will the ball travel horizontally before it hits the ground?

Step 1 Make a diagram of the situation.

Step 2 Write a parametric equation for the vertical position of the ball.

$$y = tv_0 \sin \theta - \frac{1}{2}gt^2 + h_0$$
 Parametric equation for vertical position
$$= t(35) \sin (48) - \frac{1}{2}(32)t^2 + 2$$
 $v_0 = 35, \theta = 48^\circ, g = 32, \text{ and } h_0 = 2$

Step 3 Graph the equation for the vertical position and the line y = 0. Use 5: INTERSECT on the CALC menu of a calculator to find the point of intersection of the curve with y = 0. The value is about 1.7 seconds. You could also use 2: ZERO and not graph y = 0.

 ${\bf Step~4}~~{\bf Determine~the~horizontal~position~of~the~ball~at~1.7~seconds.}$

$$x = tv_0 \cos \theta$$
 Parametric equation for horizontal position = 1.7(35) cos 48 $v_0 = 35$, $\theta = 48^\circ$, and $t = 1.7$ ≈ 39.8 Use a calculator.

The ball will travel about 39.8 feet before it hits the ground.

Projectile Motion Parametric equations are often used to simulate projectile motion. For an object launched at an angle θ with the horizontal at an initial velocity v_0 , where g is the gravitational constant, t is time, and h_0 is the initial height, the horizontal distance x can be found by $x = tv_0 \cos \theta$ and the vertical position y by $y = tv_0 \sin \theta - \frac{1}{2} gt^2 + h_0$.

Exercises

1. Julie is throwing a ball at an initial velocity of 28 feet per second and an angle of 56° with the horizontal from a height of 4 feet. How far away will the ball land?

2. Jerome hits a tennis ball at an initial velocity of 38 feet per second and an angle of 42° with the horizontal from a height of 1.5 feet. How far away will the ball land if it is not hit by his opponent?