KeyConcept Component Form of a Vector

The component form of a vector \overrightarrow{AB} with initial point $A(x_1, y_1)$ and terminal point $B(x_2, y_2)$ is given by

$$\langle x_2 - x_1, y_2 - y_1 \rangle$$
.

EXAMPLE 1

Express a Vector in Component Form

Find the component form of \overline{AB} with initial point A(1, -3) and terminal point B(1, 3).

$$\overline{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
 Component form
= $\langle 1 - 1, 3 - (-3) \rangle$ $(x_1, y_1) = (1, -3)$
and $(x_2, y_2) = (1, 3)$
= $\langle 0, 6 \rangle$ Subtract.

EXAMPLE 1

Find the component form of \overline{AB} given initial point A(-4, -3) and terminal point B(5, 3).

71.

KeyConcept Magnitude of a Vector in the Coordinate Plane

If **v** is a vector with initial point (x_1, y_1) and terminal point (x_2, y_2) , then the magnitude of **v** is given by

$$|\mathbf{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

If v has a component form of $\langle a, b \rangle$, then $|\mathbf{v}| = \sqrt{a^2 + b^2}$.

KeyConcept Vector Operations

If $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$ are vectors and k is a scalar, then the following are true.

Vector Addition $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$

Vector Subtraction $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$

Scalar Multiplication $k\mathbf{a} = \langle ka_1, ka_2 \rangle$

Example 1: Find the magnitude of \overrightarrow{XY} with initial point X(2, -3) and terminal point Y(-4, 2).

Determine the magnitude of \overrightarrow{XY} using the Distance Formula.

$$|\overrightarrow{XY}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-4 - 2)^2 + [2 - (-3)]^2}$$

$$= \sqrt{(-6)^2 + 5^2}$$
= 61 or about 7.8 units

Y 2 0 2 4 -2 0 2 4 X

Represent \overrightarrow{XY} as an ordered pair.

$$\overrightarrow{XY} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
 Component form
= $\langle -4 - 2, 2 - (-3) \rangle$ $(x_1, y_1) = (2, -3)$ and $(x_2, y_2) = (-4, 2)$
= $\langle -6, 5 \rangle$ Subtract.

Example 2: Find each of the following for $s = \langle 4, 2 \rangle$ and $t = \langle -1, 3 \rangle$.

a.s+t

$$\mathbf{s} + \mathbf{t} = \langle 4, 2 \rangle + \langle -1, 3 \rangle$$
 Substitute.
= $\langle 4 + (-1), 2 + 3 \rangle$ or $\langle 3, 5 \rangle$ Vector addition

b.3s+t

$$3\mathbf{s} + \mathbf{t} = 3\langle 4, 2 \rangle + \langle -1, 3 \rangle$$
 Substitute.
= $\langle 12, 6 \rangle + \langle -1, 3 \rangle$ Scalar multiplication
= $\langle 11, 9 \rangle$ Vector addition

Exercises

Find the component form and magnitude of the vector \overline{AB} with the given initial and terminal points.

$$\frac{1. A(12, 41), B(52, 33)}{AB} = \langle 52-12, 33-41 \rangle = \sqrt{(52-12)^2 + (33-41)^2} \\
= \langle 40, -8 \rangle = -40.79$$

Find each of the following for $f = \langle 4, -2 \rangle$, $g = \langle 24, 21 \rangle$, and $h = \langle -1, -3 \rangle$.

Unit Vectors A vector that has a magnitude of 1 unit is called a unit vector. A unit vector in the direction of the positive x-axis is denoted as $\mathbf{i} = (1, 0)$, and a unit vector in the direction of the positive y-axis is denoted as $\mathbf{j} = (0, 1)$. Vectors can be written as linear combinations of unit vectors by first writing the vector as an ordered pair and then writing it as a sum of the vectors \mathbf{i} and \mathbf{j} .

Example 1: Find a unit vector u with the same direction as $v = \langle -4, -1 \rangle$.

$$\mathbf{u} = \frac{1}{|\mathbf{v}|} \mathbf{v}$$
 Unit vector with the same direction as \mathbf{v}

$$= \frac{1}{|(-4,-1)|} \langle -4, -1 \rangle$$
 Substitute.
$$= \frac{1}{\sqrt{(-4)^2 + (-1)^2}} \langle -4, -1 \rangle$$
 $|\langle a,b \rangle| = \sqrt{a^2 + b^2}$

$$= \frac{1}{\sqrt{17}} \langle -4, -1 \rangle$$
 Simplify.

$$=\langle \frac{-4}{\sqrt{17}},\frac{-1}{\sqrt{17}}\rangle \text{ or } \langle \frac{-4\sqrt{17}}{17},\frac{-\sqrt{17}}{17}\rangle \\ \text{Scalar multiplication}$$

Example 2: Let \overrightarrow{MP} be the vector with initial point M(2, 2) and terminal point P(5, 4). Write \overrightarrow{MP} as a linear combination of the vectors i and j.

First, find the component form of \overrightarrow{MP} .

$$\overrightarrow{MP} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
 Component form
= $\langle 5 - 2, 4 - 2 \rangle$ or $\langle 3, 2 \rangle$ $(x_1, y_1) = (2, 2)$ and $(x_2, y_2) = (5, 4)$

Then rewrite the vector as a linear combination of the standard unit vectors.

EXAMPLE 4

Find a Unit Vector with the Same Direction as a Given Vector

Find a unit vector u with the same direction as $v = \langle 4, -2 \rangle$.

$$u = \frac{1}{|v|}v$$

Unit vector with the same direction as **v**.

$$A: \langle \frac{2}{5(2)}, \frac{2}{5(2)} \rangle = \frac{2}{5(2)} \int_{0.5}^{2} \frac{1}{15(2)} = \frac{2}{5(2)} = \frac{2}{5(2)} = \frac{2}{5(2)} = \frac{2}{5(2)} =$$

Exercises

Find a unit vector u with the same direction as the given vector.

1.
$$p = \langle 4, -3 \rangle$$
 $\vec{U} = |\vec{p}| |\vec{p}|$
 $|\vec{p}| - |(4)^2 + (-3)^2|$
 $|\vec{p}| - |(4)^2 + (-3)^2|$

2. $w = \langle 10, 25 \rangle$
 $|\vec{p}| - |\vec{q}| + |\vec{q$

Let \overrightarrow{MN} be the vector with the given initial and terminal points. Write \overrightarrow{MN} as a linear combination of the vectors i and j.

EXAMPLE 6 Find Component Form

Find the component form of the vector v with magnitude 7 and direction angle 60°.

 $\mathbf{v} = \langle |\mathbf{v}| \cos \theta, |\mathbf{v}| \sin \theta \rangle$ Component form of \mathbf{v} in terms of $|\mathbf{v}|$ and θ

=
$$\langle 7\cos 60^{\circ}, 7\sin 60^{\circ} \rangle$$
 |**v**| = 7 and θ = 60°

$$|{\bf v}| = 7 \text{ and } \theta = 60^{\circ}$$

$$= \left\langle 7 \left(\frac{1}{2} \right), \ 7 \left(\frac{\sqrt{3}}{2} \right) \right\rangle$$

$$\cos 60^\circ = \frac{1}{2}$$
 and $\sin 60^\circ = \frac{\sqrt{3}}{2}$

$$=\left\langle \frac{7}{2}, \frac{7\sqrt{3}}{2} \right\rangle$$

Simplify.

EXAMPLE 7

Direction Angles of Vectors

A. Find the direction angle of $p = \langle 2, 9 \rangle$ to the nearest tenth of a degree.

$$\tan \theta = \frac{b}{a}$$

Direction angle equation

$$\tan \theta = \frac{9}{2}$$

$$a = 2$$
 and $b = 9$

$$\theta = \tan^{-1} \frac{9}{2}$$

Solve for θ .

$$\theta \approx 77.5^{\circ}$$

Use a calculator.

Find the component form of v with the given magnitude and direction angle.

5.
$$|\mathbf{v}| = 18$$
, $\theta = 240^{\circ}$

6.
$$|\mathbf{v}| = 5$$
, $\theta = 95^{\circ}$

Find the direction angle of each vector to the nearest tenth.

$$7. -4i + 2j$$