8.3.notebook

March 20, 2017

45.
$$-2i+5'$$
)
$$\Theta = +an' - \frac{5}{2}$$

$$\Theta = -68.7$$

$$68.2$$
80

8.3.notebook March 20, 2017

8-3 Study Guide and Intervention

Dot Products and Vector Projections

Dot Product The dot product of $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ is defined as $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$.

8.3.notebook March 20, 2017

KeyConcept Orthogonal Vectors

The vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

KeyConcept Properties of the Dot Product		
If u, v , and w are vectors and k is a scalar, then the following properties hold.		
Commutative Property	$u \cdot v = v \cdot u$	
Distributive Property	$u \cdot (v + w) = u \cdot v + u \cdot w$	
Scalar Multiplication Property	$k(\mathbf{u} \cdot \mathbf{v}) = k\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot k\mathbf{v}$	7(4.2)
Zero Vector Dot Product Property	$0 \cdot u = 0$	2
Dot Product and Vector Magnitude Relationship	$\mathbf{u} \cdot \mathbf{u} = \mathbf{u} ^2$	

KeyConcept Angle Between Two Vectors

If θ is the angle between nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}.$$

Proof

Consider the triangle determined by \mathbf{a} , \mathbf{b} , and $\mathbf{b} - \mathbf{a}$ in the figure above.

$$|a|^2 + |b|^2 - 2|a||b|\cos\theta = |b - a|^2$$

$$|a|^2 + |b|^2 - 2|a||b|\cos\theta = (b-a) \cdot (b-a)$$

$$|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos \theta = \mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$

$$|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{a}|^2$$

$$-2 |\mathbf{a}| |\mathbf{b}| \cos \theta = -2\mathbf{a} \cdot \mathbf{b}$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

Law of Cosines

$$|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u}$$

Distributive Property for Dot Products

$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

Subtract $|\mathbf{a}|^2 + |\mathbf{b}|^2$ from each side.

Divide each side by -2|a||b|.

8.3.notebook March 20, 2017

Example 1: Find the dot product of u and v. Then determine if u and v are orthogonal.

a.
$$\mathbf{u} = \langle 5, 1 \rangle$$
, $\mathbf{v} = \langle -3, 15 \rangle$
b. $\mathbf{u} = \langle 4, 5 \rangle$, $\mathbf{v} = \langle 8, -6 \rangle$
 $\mathbf{u} \cdot \mathbf{v} = 5(-3) + 1(15)$
 $\mathbf{u} \cdot \mathbf{v} = 4(8) + 5(-6)$
 $\mathbf{v} = 2$

Since $\mathbf{u} \cdot \mathbf{v} = 0$, \mathbf{u} and \mathbf{v} are orthogonal.

Since $\mathbf{u} \cdot \mathbf{v} \neq 0$, \mathbf{u} and \mathbf{v} are not orthogonal.

Example 2: Find the angle θ between vectors u and v if $u = \langle 5, 1 \rangle$ and $v = \langle -2, 3 \rangle$.

$$\cos\theta = \frac{u \cdot v}{|u| \, |v|} \qquad \qquad \text{Angle between two vectors}$$

$$\cos\theta = \frac{\langle 5.1 \rangle \cdot \langle -2.3 \rangle}{|\langle 5.1 \rangle| \, |\langle -2.3 \rangle|} \qquad \qquad \mathbf{u} = \langle 5, \, 1 \rangle \text{ and } \mathbf{v} = \langle -2, \, 3 \rangle$$

$$\cos\theta = \frac{-10 + 3}{\sqrt{26} \, \sqrt{13}} \qquad \qquad \text{Evaluate.}$$

$$\theta = \cos -1 \, \frac{-10 + 3}{\sqrt{26} \, \sqrt{13}} \text{ or about } 112^\circ \qquad \qquad \text{Simplify and solve for } \theta.$$

The measure of the angle between **u** and **v** is about 112°.

Exercises

Find the dot product of u and v. Then determine if u and v are orthogonal.

1.
$$u = \langle 2, 4 \rangle$$
, $v = \langle -12, 6 \rangle$
2. $u = -8i + 5j$, $v = 3i - 6j$

$$\overrightarrow{U} \cdot \overrightarrow{V} = (2\cancel{(-12)} + (4\cancel{(4)}\cancel{(4)})$$

$$\overrightarrow{U} \cdot \overrightarrow{V} = (-8\cancel{(3)}) + (5\cancel{(5)} - 6)$$

$$= -5\cancel{(5)}$$
Of the given $\overrightarrow{(5)}$ and $\overrightarrow{$

Use the dot product to find the magnitude of the given vector.

3.
$$\mathbf{a} = \langle 9, 3 \rangle$$
4. $\mathbf{c} = \langle -12, 4 \rangle$

$$|\vec{a}|^2 = \langle 9 \rangle + \langle 3 \rangle \langle 3 \rangle$$

$$|\vec{a}|^2 = \sqrt{90}$$

$$|\vec{a}|^2 = 3\sqrt{10}$$

Find the angle θ between u and v to the nearest tenth of a degree.

5.
$$\mathbf{u} = \langle -3, -5 \rangle$$
, $\mathbf{v} = \langle 7, 12 \rangle$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$

6. $\mathbf{u} = 13\mathbf{i} - 5\mathbf{j}$, $\mathbf{v} = 6\mathbf{i} + 2\mathbf{j}$