KeyConcept Quick Tests for Symmetry in Polar Graphs

Words

The graph of a polar equation is symmetric with respect to

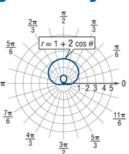
- the polar axis if it is a function of $\cos \theta$, and
- the line $\theta = \frac{\pi}{2}$ if it is a function of $\sin \theta$.

Example

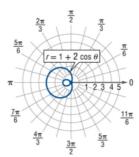
The graph of $r = 3 + \sin \theta$ is symmetric with respect to the line $\theta = \frac{\pi}{2}$.

Use symmetry to graph $r = 1 + 2 \cos \theta$.

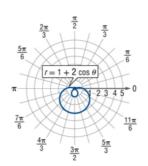
A.



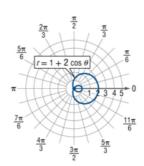
C



B.



D.



9-2 Study Guide and Intervention Graphs of Polar Equations

Graphs of Polar Equations A **polar graph** is the set of all points with coordinates (r, θ) that satisfy a given polar equation. The position and shape of polar graphs can be altered by multiplying or adding to either the function or θ .

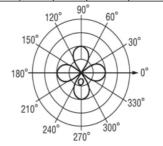
Example 1: Graph the polar equation $r = 2 \cos 2\theta$.

Make a table of values on the interval $[0, 2\pi]$.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$r = 2 \cos 2\theta$	2	1	0	1	-2	-1	0	1	2	1	0	-1	-2	-1	0	1	2

Graph the ordered pairs (r, θ) and connect with a smooth curve.

This type of curve is called a **rose**. Notice that the farthest points are 2 units from the pole and the rose has 4 petals.



Example 2: Graph the polar equation $r = 1 + 2 \sin \theta$. Round each r-value to the nearest tenth.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$r = 1 + 2 \sin \theta$	1	2	2.4	2.7	3	2.7	2.4	2	1	0	-0.4	-0.7	-1	-0.7	-0.4	0	1

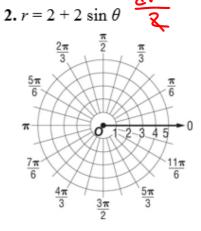
Graph the ordered pairs and connect them with a smooth curve. This type of curve is called a **limacon**.

Exercises

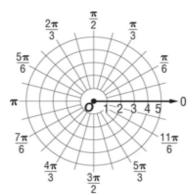
Graph each equation by plotting points.

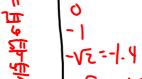
$$\mathbf{1.}\ r = 2\ \sin\,\theta$$





3.
$$r = 1 - 3 \cos \theta$$

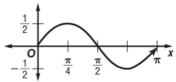




Classic Polar Curves The graph of a polar equation is symmetric with respect to the polar axis if it is a function of $\cos \theta$, and to the line $\theta = \frac{\pi}{2}$ if it is a function of $\sin \theta$. It is symmetric to the pole if replacing (r, θ) with $(-r, \theta)$ or $(r, \pi + \theta)$ produces an equivalent equation. Knowing whether a graph is symmetric can reduce the number of points needed to sketch it.

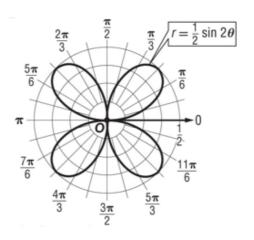
Example: Determine the symmetry, zeros, and maximum r-values of $r = \frac{1}{2} \sin 2\theta$. Then use this information to graph the function.

The function is symmetric with respect to the line $\theta = \frac{\pi}{2}$, so you can find points on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and then use line symmetry to complete the graph. To find the zeros and the maximum r-value, sketch the graph of the rectangular function $y = \frac{1}{2} \sin 2x$.



From the graph, you can see that $|y| = \frac{1}{2}$ when $x = \frac{\pi}{4}$, and $\frac{3\pi}{4}$ and y = 0 when $x = 0, \frac{\pi}{2}$, and π . That means that |r| has a maximum value of $\frac{1}{2}$ when $\theta = \frac{\pi}{4}$ or $\frac{3\pi}{4}$ and r = 0 when $\theta = 0, \frac{\pi}{2}$, or π . Use these and a few additional points to sketch the graph of the function.

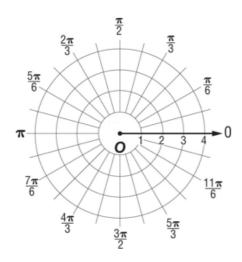
Use the axis of symmetry to complete the graph after plotting points on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.



Exercises

Use symmetry, zeros, and maximum r-values to graph each function.

1.
$$r = 4 \sin 3\theta$$



$$2. r = 3 \cos 2\theta$$

