

9-3 Study Guide and Intervention

Polar and Rectangular Forms of Equations

Polar and Rectangular Coordinates If a point P has polar coordinates (r, θ) , then the rectangular coordinates (x, y) of P are given by $x = r \cos \theta$ and $y = r \sin \theta$. If a point P has rectangular coordinates (x, y), then the polar coordinates (r, θ) of P are given by $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1} \frac{y}{x}$, when x > 0, and $\theta = \tan^{-1} \frac{y}{x} + \pi$, when x < 0.

Example 1: Find rectangular coordinates for point P with the polar coordinates $\left(3, \frac{3\pi}{4}\right)$

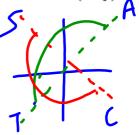
For
$$P(3, \frac{3\pi}{4})$$
, $r = 3$ and $\theta = \frac{3\pi}{4}$. Use the conversion formulas.

$$x = r \cos \theta$$

$$= 3 \cos \frac{3\pi}{4}$$

$$= 3 \left(-\frac{\sqrt{2}}{2}\right) \text{ or } -\frac{3\sqrt{2}}{2}$$

$$= 3\left(\frac{\sqrt{2}}{2}\right) \text{ or } \frac{3\sqrt{2}}{2}$$



The rectangular coordinates of P are $\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$, or (-2.12, 2.12) to the nearest hundredth.

Example 2: Find two pairs of polar coordinates for point R with the rectangular coordinates (5, -9).

For R(5, -9), x = 5 and y = -9.

$$r = \sqrt{x^2 + y^2}$$
 $\theta = \tan^{-1} \frac{y}{x}$
 $= \sqrt{5^2 + (-9)^2}$ $= \tan^{-1} \frac{-1}{5}$
 $= \sqrt{106}$ or about 10.30 $= -1.06$

One pair of polar coordinates for R is (10.30, -1.06). To obtain a second pair of polar coordinates for R, you can add 2π to the θ -value. This results in $(10.30, -1.06 + 2\pi)$ or (10.30, 5.22).

Exercises

Find rectangular coordinates for each point with the given polar coordinates.

1.
$$(20, -60^{\circ})$$
 $X = \Gamma \cos \Theta$ $Y = \Gamma \sin \Theta$
 $X = 20 \cos -60$ $Y = 20 \cdot \sin -60$ $Y = 3 \sin \frac{\pi}{3}$
 $X = 20 \cos -60$ $Y = 20 \cdot \sin -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $X = 20 \cos -60$ $Y = 20 \cdot \sin -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = 20 \cdot \sin -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = 20 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = 20 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = 20 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \cos -60$ $Y = 3 \cdot \sin \frac{\pi}{3}$
 $Y = -10 \cdot \cos -60$ $Y = 3 \cdot \cos -60$

Find two pairs of polar coordinates for each point with the given rectangular coordinates if $0 \le \theta \le 2\pi$.

9-3 Study Guide and Intervention (continued)

Polar and Rectangular Forms of Equations

Polar and Rectangular Equations You can also use the relationships $r^2 = x^2 + y^2$, $x = r \cos \theta$ and $y = r \sin \theta$, and $\tan \theta = \frac{y}{r}$ to convert between rectangular equations and polar equations.

Example 1: Identify the graph of the rectangular equation $y = -3x^2$. Then write the equation in polar form. Support your answer by graphing the polar form of the equation.

The graph of $y = -3x^2$ is a parabola with vertex at the origin that opens down.

$$y = -3x^2$$
 Original equation $r \sin \theta = -3(r \cos \theta)^2$ $x = r \cos \theta$ and $y = r \sin \theta$ $r \sin \theta = -3r^2 \cos^2 \theta$ Multiply.

Sin $\theta = -3r \cos^2 \theta$ Divide each side by $-3r \cos^2 \theta$.

 $-\frac{1}{2}\tan\theta \sec\theta = r$ Quotient and Reciprocal Identities

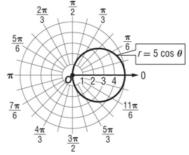
 $\frac{5\pi}{6}$ π $\frac{7\pi}{6}$ $\frac{4\pi}{3}$ $\frac{3\pi}{3}$ $\frac{11\pi}{6}$ $r = -\frac{1}{3} \tan \theta \sec \theta$

The graph of the polar equation $r = -\frac{1}{3} \tan \theta \sec \theta$ is a parabola with vertex at the pole that opens down.

Example 2: Write the polar equation $r = 5 \cos \theta$ in rectangular form and then identify its graph. Support your answer by graphing the polar form of the equation.

$$r=5\cos\theta$$
 Original equation $r^2=5r\cos\theta$ Multiply each side by r . $x^2+y^2=5x$ $r^2=x^2+y^2$ and $r\cos\theta=x$ $x^2-5x+y^2=0$ Sulptract $5x$ from each side.

Because in standard form this equation is $(x - 2.5)^2 + y^2 = 6.25$, you can identify the graph of this equation as a circle centered at (2.5, 0) with radius 2.5, as supported by the graph of $r = 5 \cos \theta$.



Exercises

Identify the graph of each rectangular equation. Then write the equation in polar form. Support your answer by graphing the polar form of the equation.